Activation of p47(PHOX), a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity.
نویسندگان
چکیده
The leukocyte NADPH oxidase catalyzes the reduction of oxygen to superoxide (O-2) at the expense of NADPH in phagocytes and B lymphocytes. The enzyme is dormant in resting cells but becomes active when the cells are exposed to appropriate stimuli. During oxidase activation, the highly basic cytosolic oxidase component p47(PHOX) becomes phosphorylated on several serines and migrates to the plasma membrane. We report here that p47(PHOX)-deficient B lymphoblasts expressing the p47(PHOX) S359A/S370A or p47(PHOX) S359K/S370K double mutation show dramatically reduced levels of enzyme activity and phosphorylation of p47(PHOX) as compared with the same cells expressing wild type p47(PHOX). In addition, these mutant p47(PHOX) proteins fails to translocate to the plasma membrane when the cells are stimulated. In contrast, normal phosphorylation and translocation are seen in mutants containing aspartate or glutamate at positions 359 and 370, but oxidase activity is still greatly reduced. These results imply that a negative charge at position 359 and/or 370 is sufficient to allow the phosphorylation and translocation of p47(PHOX) to take place but that features unique to a phosphorylated hydroxyamino acid are required to support O-2 production. These findings, plus those from an earlier study (Inanami, O., Johnson, J. L., McAdara, J. K., El Benna, J., Faust, L. P., Newburger, P. E., and Babior, B. M. (1998) J. Biol. Chem. 273, 9539-9543), suggest that oxidase activation requires 1) the sequential phosphorylation of at least two serines on p47(PHOX): Ser-359 or Ser-370, followed by Ser-303 or Ser-304; and 2) the translocation of p47(PHOX) to the membrane at some point after the first phosphorylation takes place.
منابع مشابه
Phosphorylation of the leucocyte NADPH oxidase subunit p47(phox) by casein kinase 2: conformation-dependent phosphorylation and modulation of oxidase activity.
The leucocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyses the reduction of oxygen to O(-)(2) at the expense of NADPH. The enzyme is dormant in resting neutrophils but becomes active when the cells are exposed to the appropriate stimuli. During oxidase activation, the highly basic cytosolic oxidase component p47(phox) becomes phosphorylated on several serines and migra...
متن کاملModulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase.
The leukocyte NADPH oxidase catalyzes the reduction of oxygen to O(2)(-) at the expense of NADPH. Extensive phosphorylation of the oxidase subunit p47(PHOX) occurs during the activation of the enzyme in intact cells. p47(PHOX) carrying certain serine-to-alanine mutations fails to support NADPH oxidase activity in intact cells, suggesting that the phosphorylation of specific serines on p47(PHOX)...
متن کاملCytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox).
The NADPH oxidase of human monocytes is activated upon exposure to opsonized zymosan and a variety of other stimuli to catalyze the formation of superoxide anion. Assembly of the NADPH oxidase complex is believed to be a highly regulated process, and molecular mechanisms responsible for this regulation have yet to be fully elucidated. We have previously reported that cytosolic phospholipase A(2...
متن کاملMechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here,...
متن کاملSH3-dependent assembly of the phagocyte NADPH oxidase
F ~hagocytic cells contain a complicated enzyme system, termed NADPH oxidase, that is responsible for the production of toxic oxygen species (1). The enzyme transfers electrons from NADPH to 02, forming O2-, which then can dismutate into H202. Subsequently, other oxygen derivatives, such as hydroxyl radical and hypochlorous acid, may be formed. Collectively, these oxygen products are toxic to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 52 شماره
صفحات -
تاریخ انتشار 1998